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NASA TT F-10,273 

DESIGN OF PINNED BLADES FOR VIBRATION 

B. F. Shorr 

A3STRACT 

Development of a general method for calculating the vi- 

brations of twisted pinned blades under combined bending and 

torsion. Tke analysis extends previous results obtained for 

rigid blades. 

..-- 

In reference 1 consideration was given to the kinematics of pinned 

blades in the presence of structural clearance in the pinned joint with 2 

degrees of freedom and approximate estimates were obtained for the first form of 

vibrations. 

/292+' 

In this article a general method for the calculation of combined 
bending and torsional vibrations of twisted pinned blades is presented. It is 

an extension of an analogous method developed earlier for the rigidly mounted 

blades (ref. 2). 

The principa; design of a pinned blade is shown in figure 1. Subsequently 

it is assume6 thaz tne hinge axis is directed 2arallel to the axis of the rotor. 

Ti=e mass of the p l n  is negligibly small in comparison to the mass of the /293  

b l a d e .  

J 

Vibrztions occur at low amplitude,which enables us to use. linearized 

eqdat ions and to 1 iml t our considerations of the motion of the blade during 
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NASA TT F-S0,;!73 

F'igure 1. S c h e m t i c  diagram of pinned blade. 
J 

ro l l i -ng  i n  t h e  pinned j o i n t  without s i ippage ( r e f .  1). 

the motion of t h e  blade as a s o l i d  i r ,  t h e  plane of t h e  r o t a t i o n  of t h e  r o t o r  i s  

Under t h e s e  condi t ions 

where q and cp2 are -,gles of r o t a t i o n  of the blade wi th  r e s p e c t  t o  t h e  p i n  of 

t h e  k icge  and of t h e  p i n  with r e spec t  t o  t h e  d i sk ,  z = z - 2 8 ,  and e i s  t h e  p i n  

1 
N 

rad ius .  

The coordinates  of t h e  con tac t  po in t s  of tne blade with p i n  B and t h e  p i n  
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where ( f i g .  2 )  

are dimensionless parameters equal t o  t h e  r e c i p r o c a l s  of t h e  r e s p e c t i v e  c l e a r -  

antes i n  t h e  pinned j o i n t ;  i n  t h e  general  case 1 < y 2 0 3 .  & i , 2  I 

I n  t h e  i n v e s t i g a t i o n  of t h e  lower forms of bending and t o r s i o n a l  v i b r a t i o n s  

of tw i s t ed  blades it i s  genera l ly  poss ib l e  t o  neg lec t  t h e  e f f e c t  of l o n g i t u d i n a l  

i n e r t i a  f o r c e s  and f l e x u r e  i n  the plane of g r e a t e s t  r i g i d i t y .  Here t h e  r e l a t i o n -  

s h i p s  between t h e  components of the e l a s t i c  curvature  i n  t h e  lowest r i g i d i t y  

F igure  2 .  DiagrLa of pinned blade wi th  two degrees of freedom i n  a 

t i l t e d  p o s i t i o n .  
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plane x a d  torsion T along with bending moment in the same plane M 

sional monent M 

of the following form 

and tor- 
,- 
P 5 

in accordance with the theory of twisted rods (refs. 2,3)  are z 

are yielding coefficients which are defined b y  the formu- 11' %2 and 622 
where 6 

lae, cited in reference 2, where the following notation was adopted: 

a = -  a = 622 and xV = x5. 
9 = 611, 

Ti7 %2J 7 

and torsion T are re- 5' xv Since the components of bending deformation x 
lated to displacement components u, v and rotation 8 in the following manner 

where the superscript designates derivatives along the z coordinate, then when 

% 0 and at boundary conditions in the pinned joint (see fig. 2) we have x71 

and we can obtain the inverse relationships 

_ -  
_ I  
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I n  t h e  case of harmonic vibrat ions of the  blade i n  t h e  c e n t r i f u g a l  f o r c e  
c I I  :-!e c 

/\ 
(without taklng i n t o  account the e f f e c t  of t h e  i n e r t i a  of r o t a t i o n  w i t h  r e s p e c t  

t o  t h e  x and y axes and Cor io l i s  fo rces )  t h e  arrplitudes of v a r i a b l e  loads w i l l  

be 

s: = b i d e  

where Q is  t h e  d e n s i t y  of t h e  material of t h e  blade; 
JT 

p i s  c y c l i c  frequency of vibrat ions,  

w i s  angular  v e l o c i t y  of r o t a t i o n  of t he  blade; 

F i s  area; 

J = J + J i s ,po la r  moment of t h e  i n e r t i a  of the  c ros s  s e c t i o n .  
t h e  

P X Y  
The equation of i n t e r e s t  i s  t h e  equi l ibr ium of t h e  element of t h e  blade,  

l i n e a r  v;.lth r e s p e c t  t o  the amplitudes o f  the v a r i a b l e  rod components,and 

displacements have t h e  following form 

/295 

where 

acd P i s  c e n t r i f u g a l  f o r c e  of t h e  p a r t  of t h e  blade from t h e  cross s e c t i o n  z t o  
z 

2 t h e  f ree  end, equal t o  Pz = e,w Pl, where 

5 



3y introducicg (8) into the equilibrium equations (9) and integrating, 

taking into account the following boundary conditions at the free end oY the 

blade 

we obtain 

l !  r 

I 

By substituting expression (7) into (13) and converting to moments M and 
5 

M 

ing acd torsional vibrations of a twisted pin mounted blade with two degrees of 

we obtain the following system of integral equations which.describe the bend- 
Z 

freedom in the pinned joint: 

. .  

6 
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I 

here  x and T a r e  expressed through M- and M by equations ( 4 ) .  
2 5 

i?. -1 

= 0 )  equat ions (14) coin- ' .'p2 

s 
For t h e  s p e c i f i c  case o f , s l i gh t ly  twis ted  blade (612 = 0, bll = (EJs )  , 

-1 
b2* =. (GT) 

c ide  wi th  the  equation obtained earlier by I. A. Birger  ( r e f .  4 ) .  

) with a s t a t i o n a r y  point  hinge ( e  = 0 

Angles and q2 are determined on t h e  b a s i s  of t h e  condi t ion t h a t  t h e  91 
rrorents of a l l  fo rces  ac t ing  on t h e  blade with r e spec t  t o  po in t s  of contac t  i n  

t h e  picned j o i n t  a r e  equal t o  zero.  

s t a n t  l oad  q 

zit normal t o  t h e  j?lane yz, 

The va r i ab le  loading moment (8) and con- 

0 2 
z n  

= e w Fr,with r e spec t  t o  a random a x i s  passing through po in t  ysk, 

are 
equal t o  

6 

L 

Tvhere t h e  i n t e g r a t i o n  i s  conducted under the  whole l eng th  of t h e  blade L. The 

miss of t h e  p in  i s  neglected.  

By in t roducing  expression (8) f o r  q and expression (7)  for v i n t o  equation 
Y 

(16) we obta in  

7 



17here JA, SA and J Sc are moments of inertia and static moments for the whole C’ 

volu;:-,e of the blade with respect to contact points A and C respectively. These 

moxents are determinei . --AI’ormulas 
the 

The quantity P is equal to P = r F  dz. In 171. 
L 

Designating 

where t h e  subscript “H” refers to the low point on the blade (L = 1 -zH, z < O), H 
ac2 taking into account the fact that 

8 

J 



we m y  w r i t e  equat ion (17) i n  t h e  form 

. .- 

By in t roducing  expressions f o r  coordinates of the po in t s  of contac t  (2 )  

i n t o  equat ion (20) we f i n d  

L e t  u s  denote t h e  fol lowing e x p l i c i t  r e l a t i o n s h i p s  

where V, t he  volume of t he  whole blade,' is  equal t o  V = F dz .  

L 

Generally3 t h e  mass of the blade l o c a t e d  below po in t  A ( i .e  ., when r < rA) 

Is ne&igi 'oly small i n  comparison with t h e  r e s t  of t h e  mass of the blade and 

e/ 1 << 1. I n  t h i s  case t L and 

9 

J 



I n  This case t h e  inne r  bending moment a long t h e  r = rA and r = r C /298 
,' . _, 

cross'-.ections according t o  (lb) w i l l  be equal t o  r 

where 9 = Q i 5 ,  Y A  = Y  where a = 0, z = 0 and Q C  = Qi 'Y = Y  when a = 0, 

z = 0. 
A 5 5' c 5 

N 

If the bending r i g i d i t y  of t h e  t a i l  end i s  s i g n i f i c a n t l y  higher  than t h e  

r i g i d i t y  02 t're f i n ,  then,assuming t h a t  when z < 1 
07 5 
,$ 

t h a t  ope ra to r s  @ (r) andY ( r )  i n  t h e  random crossFect ion of the t a i l  end are 

expressed through the i r  values  i n  t h e  base cross s e c t i o n  of t h e  f i n  (@ 

q u a n t i t y  x = 0, w e  f i n d  

X X 

= 9 xo 5' 
= y when a = 0, z = 1 ) by the following formulas 3! xo 0 

. 

? ~ O X  which it fol lows t h a t  

10 



and analogous expressions can be written for i4 andYC. C 

Comparing (24)  with (21)  and taking (26) i n t o  account,we f i n d  t h a t  condi- 

% -  t ioris ;.$.= Ax = 0 may b e  represented  i n  t h e  form 

where 

-y are equal  t o  vC D = vA -y It can 3e seen from Figure  3 t h a t  hA and hC = B 
t h e  d i s t a n c e s  i n  t h e  bent  pos i t i on  between po in t s  of contac t  and p o i n t s  on t h e  

axis of the blade l o c a t e d  on t h e  same r a d i i .  

Sy s u b t r a c t i n g  i n  equat ion (21) quan t i ty  % from M.,, ,or  i n .  equat ion (27) 

q u a n t i t y  M from M when p f 0 we obta in  r e s p e c t i v e l y  A C’ 

o r  ( f i g .  4 )  

11 
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. .  

Figure 3. Pormulation of boundary conditions in the pin joint. 

Figure 4. Determination of the transverse force QA. 
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It can be s’r,oim ( r e f .  1) that quant i ty  

(31) 

1300 

i t  9 - - + G,5 (Ylyi - TJ??~) 

determines t h e  s lope of l i n e  BD connecting po in t s  of contac t  i n  t h e  

de f l ec t ed  pos i t i on ,  and consequently equations (29)  and ( S O )  r e f l e c t  t h e  condi- 

t i o n  

i .e. ,  t h e  f o r c e  of  r eac t ion  R passes  through the po in t s  of contact  ( s e e  f i g .  2 ) .  

Fol.’ ca l cu la t ion  i n  t h e  general  case one can make use of equat ion (29)  and 

one of equations (21) .  In  t h e  spec i f i c  case when t h e  p i n  i s  s t a t i o n a r y  wi th  re- 

spec t  t o  t h e  blade (cpl = 0, y1 = m )  only t h e  second equation (21) i s  meaningful, 

fro2 which it fol lows t h a t  

When t h e  p in  i s  immobile w i t h  respect  

f i r s t  equat ion (21)  it fol lows that 

t o  t h e  d i s k  (y2 = Q), ‘p2 = 0) ,  from ,the 

. . 

For t h e  r i g i d  blade t h e  operators $33 and t h e  system (21)  may be reduced 

b y  subsz i tu t ion  of va r i ab le s  t o  t h e  system of equations obtained i n  r e fe rence  1 

Tor zhe pendulum form of o s c i l l a t i o n s  (without tak ing  i n t o  account t h e  m a s s  of 

t h e  f i n ) .  



t h  Let u s  now consider t h e  a n a l y s i s  of o r thogonal i ty  condi t ions f o r  the  m 

th a-nd n ~ O I T ~ ~ S  of v ib ra t ions .  The or thogonal i ty  condi t ions f o r  t h e  displacements 

wi th in  t h e  framework of t he  considered theory  f o r  twisted rods has, a c c o r d i n g \ t o  

(ref. 3) ,  the  following form 

. - .  

I n t e g r a t i n g  (35) by p a r t s  and t ak ing  i n t o  account t h e  boundary condi t ions 
a 

of ( 6 )  and (12)? i n  the case o f , r i g i d  t a i l  s e c t i o n  we ob ta in  (x = 0 wnen z < 1 ) s 0 

J 

where 

are t h e  i n t e r n a l  moaents due t o  i n e r t i a  l oads  caused by complete displacements of 

the  blade, and 

are t h e  moments of i n e r t i a  loads with r e s p e c t  t o  t h e  axes passing through p o i n t s  

A and C p a r a l l e l  t o  t h e  x axis r e spec t ive ly .  

14 



Ween x % 3, it follows from (36) that  7 
7 

On t h e  b a s i s  of expression (14)  one may mite 

1301- 

(39) 

where 

Thus,  t h e  o r thogona l i ty  condition becomes 

Tne system of i n t e g r a l  equations (14) w i t h  a d d i t i o n a l  boundary condi t ions  

(21). and o r thogona l i ty  condi t ions  (42) may b e  solved b y  t h e  method of succes ive  

t h  approxinzations. The order  of ca l cu la t ion  of t h e  ith approximation of t h e  n 

form of v i b r a t i o n s  i s  as fol lows.  From the  e a r l i e r  found or  preassigned values  

which s a t i s f y  t h e  orthogon- of rnoments of t h e  (i-l)th approximation M 

a l l t y  condi t ions  f o r  all of t h e  previous forms through the  use of formula (15) 

i-1 i-1 
, MZn , Sn 

i-1 ,!i-l 
Sn y i - l ,  Sn zn ' zn . I n  we e m  f i n d  t h e  values  of t h e  i n t e g r a l  opera tors  

order for t h e  rcloments for t h e  ith approximation and t h e  corresponding va lues  of 

ang le s  t o  s a t i s f y  or thogonal i ty  condi t ions we mus t  determine them i n  t h e  form 



I 
I 

and 

where Mr M are 
sm) zm 

brations which are 

from orthogonality 

P -1 

,? -. 

(43) 

(44) 

are the' angles of the ?nth form of vi- lm' %m moments and cp 

i 
m considered to be known; B are coefficients which are found 
2 i 2  -i ,i 
ni conditions; the values p = (p,) and cplrl, cp2,,, are still 

randorn . 
According to (ref. 4) the following deformation components correspond to 

monents in equation (43) 1302 

where 

th 
art2 T are known components of deformation of the prec-eding m form. By. ~m' m 

substl-u;ting equation (45) into (n-1) orthogonality conditions 

16 



“v ‘v h 

areknown quantities,we obtain where Pgm, QZm, * ~ m ’  *Cm’ %m’ v2m 

where the following representation is observed 

J 

.\:--‘>,,AJ:-;; r’ _ _  - CJ, .< -- 

and ia view of orthogonality conditions of all (n-1) forms among themselves the 

following is taken into account 

8 s  well as the fact that according to (49) 



. 

From (48) we find the follaring'expression for the coefficient PA: 1303 

where 

where 
4- p 2  @*I-1 - 02\k"i-1 . 

ni zn . zn * 

n -1 n -1 I 
i 

/ 
n -1 n -1 



and 

(57) 

(Formulae from B etc., are analogous). p52’ Bws2 
and the corresponding func- 

@, 

Apparently both the coefficients BmP, @,, 
th are the same for all approximations of the n ps’ Bc& Bpz’ Bcpz tions B 

defined by equation (55) satisfy the orthogonality form. The moments’ Msn, Mzn 

conditions for all of the precezding forms at any values of pni, 'Pin an‘ ‘~2n* 

The quantity pni is found from the simplest condition of the passed in- 

tegral equality of the moments of the (i-l)th and ith approximations for which 

the work of’ the loads of the ( i-l)th and of the ith approximation for displace- 

ment of the ( i-l)th approximation are equated, which gives ’ ’ 

i 

2 i 

2 /304 

Using more complex conditions in this problem (for example,evaluation of 

the weighted least square fit (ref. b ) ) ,  complicates the solution practically 

without 

BY 

rive at 

improving the convergence. 

substituting expression ( 55) for the moments into equation (58), we ar- 

the following equation which correlates quantities pni 2 with Li (~1,. and -i. ( P ~ ~ .  



where 

B B are values of t h e  
here ' ln '  'Xn' Bp51,A' p52,A' BwS1,A' w52,A' Bqg l ,A '  Bcp52,A 
corresponding functions a t  point A and analogously @En e t c .  are t h e i r  valuer3 a t  

point$. 

i n t o  account (23 ) , i t  follows t h a t  (when w 

4. On the  okher hand, from the  boundary conditions (21) and (29), taking 

2 
0 )  

where 

20 



i Having solved equation (61) wi-th respect to angles (p ln and q& we find 

where 

By substitution of (63) into. (59) we arrive at a cubical equation with re- 

spect t o  p2 . Having found by the ordinary method its real loads (see for ex- ni 

ample (ref. 7)) and having determined the corresponding values of angles,we take 
. 2 -i -i a6 the solution for further calculation that group of values of pniy cplnY cp2n 

i-1 2 
) becomes the smallest. i . i-112 for which the quantity (vln - v1n 

+ (vkn -'~2n 

In calculations it..iffruseful.to keep in mind that 

i 
i From the found values of pnij 2 -i cpni and qhn we determine moments M and M:~ 

Sn 
using formulae (55) and angles vln and v2n from fohulae (44) and (52). 

i i 

I It ,is well known (ref. 4) that the above presented simple iteration problem 

converges only when the flexibility parameter of the blade v < 1: 

ity parameter 

The flexibil- 

)F---27, 

21 



where UP is the least nonzero eigenvalue of the corresponding stability problem, 

the equations for which are obtained from the equations of the previous problem 

1 from which 2 2 = 0 and w 
= -% if one assumes in them that p 

where 

under boundary conditions (w+ f 0, cplf 0 ,  cp2 =#= 0 )  

from which 

The system of equations (67) is solved by means of a simple iteration 

where 

... . . .- .___ . -  

Apparently the given formulation of the stability problem has only a mathemati- 1 

cal sigpificance since in the case of real changes of the direction of longi- 

tudinal forces the contact conditions in the hinge point would change. 
* '  
22 

, 



Let us note that when 'p2 = 0 

and when cpl = 0 

2 For the calculation of w*,2-3 approximations are generally 
th 

Knowing the' value of w g  we find v, and if v 2 1, for the i 

take 

ple iteration. 

8 is the coefficient which insures .csvergence when v 2 1, which 

(ref. 4) can be taken'as equal to 

h 

(72.' 1 

sufficient. 

approximation we 

means of a sim- 

according to 

In order to improve the convergence and the uniformity of the process of 

solution it is worthwhile to make use of formulae (73) and (74) also when v < 1. 

When 

kept in mind: 

selecting the initial values for these quantities the following must be 

since the first form of vibrations generally is close to the first 

0 harmonic oscillation we may take %1 = SI, i.e. 



are the frequency and the ratio of angles for the first MI and %MI/'p1MI where p 

harmonic form, determined by solving system (21) when BL = YL = 0 .  The quantity 

0 (pl is random. It may be taken to be such tha.t #a = 1. In calculation of the 

second form we assume that /307 

are the corresponding angles as will be shown below; T1' q2 

are moments and angles during oscillations in accordance 21, Mzl,  %1' v21 

with the first form and are considered to be known. 

By orthogonalizing (76) to the first form we find 

0 where x , TO are expressed through $, using formulaz(4). 
5 

Since in the general case the predominant deformation in the second form of 

vibrations can be both the bending and torsiona1,it is worthwhile to evaluate in 
2 the first approximation 2 values of p21J assuming: 

a) ' predominant'ytorsional deformations 

1 M;=l-(-)* 2-10  2 

.-  
2-10 - -  _ _  / 

0 which satisfies conditions Mz(l) = 0 and e (  l o )  = 0 ;  

b) predominandYbending deformation 

(78) 

d 

(79) 
MO,=O. 

2 4  



The expression f o r  t he  moment fi s a t i s f i e s  boundary condi t ions 5 
M i ( t )  = r f f ' ( t )  = 0. It changes s ign  when 

e q u a l i t i e s  a r e  f u l f i l l e d :  = M ~ ,  M = 

- Assuming e t h a t  here  cpo - 1 - %1' q2 - T21' 

(30) as 

0 
C 

5 

0 

z = z* and insures  t ha t  the following 

. From formulae(27) it i s  apparent 

<< I and expressing Mcl according t o  

we ob ta in  

the 
'After the  determination of,eigenvalue of pEL f o r  each va r i a t ion  fur ther  

ca l cu la t ions  of t h e  second form are conducted on the b a s i s  of i n i t i a l  v a r i a t i o n  

i n  which. the quan t i ty  pE1 had the  smallest va lue .  

I n  ca l cu la t ion  of the t h i r d  form we take  

we, take  the same quantitTes as and cpl, cp2 
0 0  e t c .  where f o r  t h e  values of ME, M 

Z J 

a 2 f o r  the second form but,correspondin$y l a r g e r  value of p21. 

pl, B2 were determined from formula (77) - - in  t h e  la t ter  case,,quantities C 

The c o e f f i c i e n t s  
a change .f 0 0  

1' 
N N - 

e t c .  f o r  C2, @ etc . ,  respec t ive ly .  
51' 52 

Analogously one can ' ass ign  i n i t i a l  'approximations f o r  subsequent forms ,/308 

but  as a r e s u l t  of assumptions which were taken as t h e  b a s i s  of t he  method,cal- 

c u l a t i o n s  06 higher f oms are o f  limited p r a c t i c a l  s ign i f i cance  . 
If by analogy wi th  t h e  previous ca l cu la t ions  or  on the  b a s i s  of o ther  con- 

s i d e r a t i o n s  the  predominant na ture  of deformation of the second and of t h e  t h i r d  

form are  known then the  i n i t i a l  approximation i s  taken d i r e c t l y  f o r  the 

25 



2 appropr ia te  va r i a t ion .  In  ca lcu la t ion  of w* f o r  i n i t i a l  values one may a l s o  

take  I$ = SI, # = 0. For t h e  s t a t iona ry  blade MA = Mc = 0,and the i n i t i a l  ap- 

proximation f o r  M should b e  assigned i n  t h e  form 
5 

where t h e  power s i s  equal t o  t he  number of degrees of freedom i n  t h e  hinge 

[when s = 2,from (82)  it follows tha t  QA = 0, which corresponds t o  condhon ( 3 0 ) .  

I n  o ther  words,when w = 0 t h e  p in  blade w i t h  2 degrees of freedom behaves as a 

beam wi th  f r e e  ends]. For t h e  second (f irst  zero)  form t = 0 and f o r  t h e  t h i r d  

form t = 1. 

The proposed general  ca lcu la t ion  method w a s  programmed f o r  t h e  e l e c t r o n i c  

d i g i t a l  computer E O .  L e t  u s  consider c e r t a i n  numerical ca l cu la t ion  methods 

when c e r t a i n  s impl i f i ca t ions  are poss ib le .  

1. Blade with one degree of freedom i n  the pinned j o i n t  ( f o r  the s p e c i f i c  

case we assume that, cp = 0, cp = . From (14) it follows that '  2 

under botindary condi t ion (34) and or thogonal i ty  condition 

S ince  when v2 = 0 f o r  ca lcu la t ion  of pEi formula (59) becomes 

'Subscript 1 of B B and other  quan t i t i e s  w a s  omitted here. 
P' 
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by introducing (85) into expression ,.(34), written for the determination of q' 
we shall obtain a quadratic equation with respect to qn: 

n' 
2 

where . 

for which the 

2. Instead of determining the quantity p' from the conditions of /SO9 ni 
integral closeness of the ith t o  the ( i-l)th approximations, generally speaking 

it is possible to make use of the method in which mzyrimum values of moments are 
i i-1 i-1 

Sn Sn Sn 
compared by assuming.that M = M at the point where M has its maximum 

value. However, the convergence of such a process is not always satisfactory, 

and in the general case this method does not lead to useful simplifications. 

However, in a specific case for the blade with 

joint, when Mmax = MA+ 0, i.e. when w% f 0, 
P 

one degree of freedom 

and when according to 

-1 i-1 o = cpn) we obtain i-1 o 
= MA, = MAn (Or 9, = 'pn 

i by equating MAn 

from which 

in a pinned 

formula (27) 



2 0 By selecting the scale of moments to be such that Mo = w B (i.e. qn = -l), 
An e 

we obtain a very simple 

By introducing the 

determine the values of 

formula 

._ _._ . - I - ~- 

found value p2 

moments which must be further integrated to the precezd- 

and Fi = -1 into equation ( 8 3 )  we can ni , n 

ing forms (just as it is done for moments of the initial approximation) .and nor- 
i 
n malized for the condition cp = -1. 

For the first frequency, when Yu << Bd, Qa << B calculations by for- 

In calculating the subsequent forms, de- 
PA' 

mula (90 )  generally converge rapidly. 

spite the simplicity of the method, its practical application is difficult due 

to loss of accuracy in calculation of the denominator of the formula ( 9 0 )  which 

is a small difference of large numbers. 
N 

The accuracy of calculation can be somewhat increased by determining QA 

when cp = -1 directly from the expression 

3 .  For a nonrotating blade,when w = 0 we can find from the system (61) the 

following 

Substituting values for'& and T;n into expressions ( 5 5 )  we obtain 

( 9 2 )  

/310 

( 9 3 )  
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P 

where 

Here when w = 0 it f o t l o d s  fbom (27) that MA = M = 0 and,consequently, C 
N N 

i i 
Formula (59) takes  on t h e  following form ( s i n c e  bln = b2n = 0)  

I 

4. For a n  

(95) 

l ea l i zed  blade with r i g i d  po in t  hinge a t  poin,  rA .(e = 0, cp2 = 0, 

cpl = 9) two boundary condi t ions (21)  become a s i n g l e  condi t ion MA = 0 ,  from which 

The f irst  equat ion (14) becomes 

-. . 

The l a s t  equation appl icable  t o  weakly tw i s t ed  blades and i t s  s o l u t i o n  by 

t h e  method of comparing m a x i m u m  ord ina tes  w a s  considered by I. A. Bi rger  ( r e f .  4 ) .  

I n  ca l cu la t ion  o f ’ t h e  f i rs t  form of v ib ra t ions  normally Mz << M so t h a t  5. 5’ 

i . e . , i n  t h e  determination of t h e  first frequency a n d  corresponding l i n e a r  d i s -  

placements u and v it i s  poss ib l e  t o  neglec t  t h e  e f f e c t  of t o r s i o n a l  moments, 

however t h e  bending deformation i s  accompanied, Zus t  as f o r  r i g i d l y  mounted I 

b lades  ( r e f .  31, by tu rn ing  of Ci-068 sez t icns ,  
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r 

(99) 

Let us also note that term 1 normally has secondary significance because z 

of relatively weak effects of cehtrifugal forces on predominantly twisting /311 

forms of vibrations. 

6. 

of equations 

Assuming in a l l  equaAions that'ql = q2 = 0 we shall arrive at a system 

. . . - .. .. -. . ,- . . . .- .. . 

when 

which describes vibrations of a twisted blade rigidly mounted along the base 

cross-section, considered earlier in (refs. 2,3,5). 

7. In calculation of the first form of vibrations of the blade with two 

degrees of freedom in a pinned joint instead of a direct solution of a cubical 

equation one can successfully solve the systems of equations (59) and (61) by 

the method of successive approximations. 

For the solution of this system,in the beginning one should assume that 

from (59) and then from i-l i-1 2 - 2 -  determine quantities p2 and %i i 
%n - %n v2n - q2n 9 ni 

si find more exact values of this value of 2 3 and Fin from formulae (63) and In 

(64) 
2 Then pni is recalculated from (59), half-sum of the initial and the more 

2 
ni' exact values of p from which again angles are determined, etc. This process 

converges rapidly, as a rule, but calculations must be carried out with suffi- 

cient accuracy. 
. 



As an example,several frequencies were calculated for the pinned blade de- 

scribed in the work of s. M. Grinberg (ref. 6 ) ,  which appears in this collec- 

tion, where the variation method for the solution of this problem is presented. 

In calculating vibrations of the blade by the method of successive.approx- 

imations the starting data must have: 

II' 
cross sectional parameters of the fin F ( z ) ,  J (z), the angle of mounting of 

A 
the cross sections a ( z ) ,  characteristics of the tail section Vm, Sm, Jm,,,di- 

a) geometrical characteristics : radii rA, rC, ro, length of the fin I 

P 

mensions 

b) 

4 
a> 

of the pinned joint e,  el, e2; 

density of the material of the blade e * 
n' 

yield coefficients 611(z), 622(z), b12(z); 

angular velocity of the rotor w. 

It is convenient to conduct calculations in the following sequence: first 

the second and the third forms of vibrations are determined when w = 0, then in 

sequence pendulum forms are calculated, .value w*, first, second and third forms 

when w f 0. 

Figures 5-8 show the.convergence process of solutions for different calcu- 

lation cases. In calculation of frequencies of a stationary blade for initial 

function purposely known rough approximations were taken: in calculation of the 

0 second form (fig. 5) Mo = ( z  - I o ) ( l  -- )2, which yields M ( 1  ) = 0 in- 
52 zn !? 0 

stead of the correct condition MA = 0. In' calculation of the third form (fig. 6) 

rff =l-& . Despite this even in the first approximation the estimate of 
23 zn 
the frequency is sufficiently accurate. 

w = 10 sec 

using condition MA = 4 . 

Calculation of the first form when 

3 -1 was carried out by two methods--general (fig. 7) and the method 

In the first case the accurate frequency value is 
i -1 

obtained, naturally after a smaller number of approximations but the extent of 
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Figuye 9. A comparison of frequency spectra of a pinned 

blade with one 0-0 and two - - degrees of freedom in 

the hinge and of a corresponding rigidly mounted blade - - -; 
I, 11, I11 are numbers of the forms of vibrations; M is the 

"pendulum" f om. 

each approximation increases. 

w3c = 0.184.10 

v = 5.45 and coefficient e = 0.845. In view of such a large flexibility of the 

bladepto obtain a satisfactory convergence along the projection of moments sev- 

For the given blade the critical velocity 

6 -1 see-', so that when w = lo3 see the flexibility parameter 

eral approximations are required. The convergence of the solution of the second 

form of vibrations is shown in Figure 8. 

The qrder of design of the blade with two degrees of freedom in the pinned 

joint is in general the same as shown above,with the exception that p2 ni and 
-i -i 
'?in' "- 1 zn must be determined by somewhat different methods. 
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? 

A comparison of the frequency spectra of a pinned blade with one and with 

two degrees of freedom in the pinned joint and a corresponding rigidly mount%d 

blade (calculated on an electronic digital computer M ~ O  according to reference 

2) is shown in figure 9. The projections of dynamic bending, curvature and 

other characteristics of the pinned blades are shown in reference 6, where com- 

parisons are made of the results calculated by the iteration and variation 

methods. 
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